Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > BROWSE ARTICLES > Author index
Search
Hyun Jung Tae  (Tae HJ) 2 Articles
The Changes in the Serum RANKL and OPG levels after Bone Marrow Transplantation: Association with Bone Mineral Metabolism.
Hyun Jung Tae, Ki Hyun Baek, Eun Sook Oh, Ki Won Oh, Won Young Lee, Hye Soo Kim, Je Ho Han, Bong Yun Cha, Kwang Woo Lee, Ho Young Son, Sung Koo Kang, Choon Choo Kim, Moo Il Kang
J Korean Endocr Soc. 2005;20(1):40-51.   Published online February 1, 2005
DOI: https://doi.org/10.3803/jkes.2005.20.1.40
  • 1,650 View
  • 21 Download
AbstractAbstract PDF
BACKGROUND
The loss of bone mass is usually detected after bone marrow transplantation(BMT), particularly during the early post-transplant period. We recently reported that enhanced bone resorption following BMT was related to both the steroid dose and increase in IL-6. It was also suggested damage of the marrow microenvironment due to myeloablation and changes in bone growth factors contribute to post-BMT bone loss. Recently, the interactions of OPG and RANKL have been reported to be crucial in osteoclastogenesis and therefore in bone homeostasis. There are few data on the changes in RANKL/OPG status during the post-BMT period. This study investigated the changes in the levels of RANKL and OPG during the post-BMT period, and also assessed whether the changes in these cytokine levels actually influenced bone turnover and post-BMT bone loss. METHODS: We prospectively investigated 110 patients undergoing allogenic BMT and analyzed 36 (32.4+/-1.3 years, 17 men and 19 women) where DEXA was performed before and 1 year after the BMT. The serum bone turnover marker levels were measured before and 1, 2, 3, 4 and 12 wks, 6 Ms, and 1 yr after the BMT. The serum sRANKL and OPG levels were measured in all patients before and 1, 3 and 12 wks after the BMT. RESULTS: The mean bone losses in the lumbar spine and total proximal femur, which were calculated as the percent change from the baseline to 1 yr, were 5.2(P<0.01) and 11.6%(P<0.01), respectively. The mean serum ICTP, a bone resorption marker, increased progressively until 3 and 6 months after the BMT, but decreased gradually thereafter, reaching the basal values after 1 year. The serum osteocalcin levels decreased progressively until 3 wks after the BMT, then increased transiently at 3 and 6 Ms, but returned to the basal level by 1 yr. The serum sRANKL and OPG levels had increased significantly by weeks 1 and 3 compared with the baseline(P<0.01), but decreased at 3 months. The sRANKL/OPG ratio increased progressively until 3 weeks, but then decreased to the basal values. During the observation period, the percent changes from the baseline in the serum RANKL levels and RANKL/OPG ratio showed positive correlations with the percent changes from the baseline serum ICTP levels. Patients with higher RANKL levels and RANKL/OPG ratio during the early post-BMT period lost more bone mass at the lumbar spine. CONCLUSION: In conclusion, dynamic changes in the sRANKL and OPG levels were observed during the immediate post-BMT period, which were related to a decrease in bone formation and loss of L-spine BMD during the year following the BMT. Taken together, these results suggest that increased sRANKL levels and sRANKL/OPG ratios could be involved in a negative balance in bone metabolism following BMT.
Close layer
The Effects of Aging on the Proliferation and Differentiation of Osteoblasts from Human Mesenchymal Stem Cells.
Ki Hyun Baek, Hyun Jung Tae, Ki Won Oh, Won Young Lee, Chung Kee Cho, Soon Yong Kwon, Moo Il Kang, Bong Yun Cha, Kwang Woo Lee, Ho Young Son, Sung Koo Kang, Choon Choo Kim
J Korean Endocr Soc. 2003;18(3):296-305.   Published online June 1, 2003
  • 1,320 View
  • 22 Download
AbstractAbstract PDF
BACKGROUND
Osteoblasts originate from osteoprogenitor cells in bone marrow stroma, termed mesenchymal stem cells (MSCs) or bone marrow stromal cells. Each MSC forms colonies (colony forming units-fibroblasts [CFU-Fs]) when cultured ex vivo. There are some reports about the age-related changes of the number and osteogenic potential of osteoprogenitor cells, but any relationship has not been clearly established in humans. In this study, we counted MSCs using CFU-Fs count and examined the proliferative capacity and differentiation potential of osteoprogenitor cells. Finally, we analyzed how these parameters varied with donor age. METHODS: Bone marrow was obtained from the iliac crest of young (n=6, 27.2+/-8.6 years old) and old (n=10, 57.4+/-6.7 years old) healthy donors. Mononuclear cells, including MSCs, were isolated and cultured in osteogenic medium. In primary culture, we compared the colony-forming efficiency of MSCs between the two groups and determined the matrix calcification. When primary culture showed near confluence, the cells were subcultured. Alkaline phosphatase activity, osteocalcinexpression by RT-PCR and proliferative potential by MTT assay were examined by the time course of secondary culture. RESULTS: At the 15th day of primary culture, the mean number of CFU-Fs was significantly higher in the younger donors (young: 148.3+/-28.9, old: 54.3+/-9.1, p=0.02) and the mean size of CFU-Fs was also larger in the younger donors than the older donors. However, matrix calcification was not different between the two groups (young: 103.6+/-50.6, old: 114.0+/-56.5, p=NS). In secondary culture, alkaline phosphatase activities were significantly lower in the older donors. The younger donors showed peak alkaline phosphatase activity at day 10, while the older donors didn't showed a remarkable peak (young: 935.5+/-115.0U/mg, old: 578.4+/-115.7U/mg, p<0.05). Total cell number as a proliferative index increased progressively during the secondary culture and a significantly greater cell number was noted in the younger donors. Osteocalcin expression was generally upregulated in the younger donors, but this was not statistically significant. CONCLUSION: Our study shows that the number of osteoprogenitor cells is decreased during aging and that the proliferative capacity and differentiation potential of osteoprogenitor cells seem to be reduced during aging.
Close layer

Endocrinol Metab : Endocrinology and Metabolism